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Abstract— Companies have a vast number of existing software 
systems, which are not immune to software erosion and ageing as 
a consequence of uncontrolled maintenance over time. Currently, 
there are several metrics to measure and quantify software 
erosion, which also recommends some maintenance actions to 
deal with software erosion. Unfortunately, there are many 
symptoms at the same time and several possible maintenance 
actions that could be carried out. As a consequence, this 
uncertain environment implies that the best set of actions is 
unknown and cannot be certainly linked to specific detected 
erosion symptoms. This paper provides a fuzzy rule-based system 
to address that challenge. The system is divided into two levels: 
the first one recognizes precise software erosion metrics and 
provides fuzzy software erosion symptoms; and the second one 
takes the fuzzy symptoms and finally obtains fuzzy maintenance 
actions. This system is therefore a decision-making mechanism to 
select the best set of actions depending on the specific software 
erosion symptoms. This system has been implemented using the 
Matlab Fuzzy Logic Toolbox and it was simulated using 
Simulink. 

Keywords. Fuzzy Rule-Based System; Software Erosion; 
Maintenance; Decision-Macking. 

I.  INTRODUCTION 
According to the Lehman’s first law, a software system 

must continually evolve or it will become progressively less 
suitable in real-world environments [8]. Indeed, companies 
count on a vast number of existing software systems which are 
not immune to software erosion and software ageing, i.e., 
existing software systems that become progressively less 
maintainable [14]. 

The successive changes in a software system degrade its 
quality, and thus, a new and improved system should replace 
the previous one. However, the wholesale replacement of these 
systems from scratch is risky since it has a great impact in 
technological, human and economic terms [7, 16]. The 
technological and human point of view is affected since 
replacement would involve retraining all the users in order to 
understand the new system and the new technology, or the new 
system may lack specific functionalities that are missing due to 
the technological changes. Moreover, the economic point of 
view is also affected since the replacement of an entire legacy 
system implies a low Return of Investment (ROI) in that 
system. In addition, the development or purchase of a new 
system could exceed a company’s budget. 

In order to address the phenomenon of software erosion, the 
evolutionary maintenance is a better solution to obtain 
improved systems, without discarding the existing systems, 
thus minimizing the software erosion effects. Evolutionary 
maintenance makes it possible to manage controllable costs 
and preserves the valuable business knowledge embedded in 
the legacy system, since 78% of maintenance changes are 
corrective or behavior-preserving [3]. 

When companies are faced with the phenomenon of 
software erosion, they have two main challenges. Firstly, they 
should know how their systems’ erosion levels are, i.e., the 
erosion symptoms. Secondly, companies should know the best 
set of maintenance actions to carry out in order to solve, or at 
least mitigate, those detected symptoms. In addition, the 
selected actions should be carried out carefully without 
committing more erosion problems. There are some works in 
the literature addressing software erosion symptoms detection. 
A common and widely-used diagnosis framework was 
proposed by Vissagio [19]. That framework recognizes a set of 
symptoms for the diagnosis of software erosion, as well as a set 
of formal metrics to measure those symptoms. In addition, this 
framework provides some maintenance actions to address each 
symptom. TABLE I summarizes symptoms, metrics and 
maintenance actions proposed by Vissagio [19]. 

The metrics proposed in that framework can be accurately 
scored by observing software systems and counting the specific 
elements (e.g., the number of clone programs, number of dead 
lines of source code, and so forth). However, the recommended 
maintenance actions usually are carried out in an uncertainly 
environment, since there are similar actions that are the same 
for different erosion symptoms (e.g. refactor, reverse 
engineering, etc). In addition, some actions while solve some 
symptoms could make another symptoms worse. Establishing 
certainly relationships between symptoms and actions is 
therefore a hard task. 

This paper proposes a fuzzy rule-based system to address 
the uncertainty in the decision-making process related to select 
the most appropriate set of maintenance actions to eradicate 
software erosion symptoms. The objective of this paper is to 
propose a fuzzy diagnosis system to detect software erosion 
symptoms, which makes it possible to select the most 
appropriate set of maintenance actions. That is, a set of actions 
that reduce the maintenance effort (and therefore the 
maintenance cost), and minimize the erosion symptoms in a 
higher level. 
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TABLE I.  FRAMEWORK TO MEASURE EROSION SYMPTOMS AND 
RECOMMENDED MAINTENANCE ACTIONS (ADAPTED FROM [19]) 

Sint. Metric Description Action 

P
ol

lu
ti

on
 

Clone 
Programs 

There are duplicate programs from 
a functional viewpoint 

Indentify most update 
version and remove the 
remaining clones 

Obsolete 
Programs 

There are source code files without 
its corresponding executable file 

Remove obsolete 
programs 

Sourceless 
Programs 

There are executables files without 
its corresponding source file to be 
maintained 

Rewrite source code by 
means of reverse 
engineering 

Dead Data 
There are created data that are not 
used by the programs 

Remove pieces of source 
code that create dead data 

Dead Code 
There are pieces of source code 
that cannot be reached by the 
control flow 

Remove dead code 

M
is

si
ng

 
K

no
w

le
dg

e 

Missing 
Documentation 

There are pieces of source code 
without documentation 

Re-document through 
reverse engineering 

Missing 
Functionalities 

There are some functionalities that 
are not met for any program 

Create, split or modify 
programs to support those 
functionalities 

Poor Lexicon There are data and programs with 
inconsistent names 

Rename and refactor 

C
ou

pl
in

g Pathological 
Files 

There are files that can be created 
or modified by several programs 

Refactor by means of 
reverse engineering 

Control Data There are data that control the 
execution flow of several programs 

Refactor by removing 
control data 

A
no

m
al

ou
s 

D
at

a 

Useless Data 
There are external data (e.g., 
databases) that are not used for any 
program 

Remove programs that 
create obsolete data 

Obsolete Data 
There are external data files 
created by a program that are not 
updated by any program 

Remove programs that 
create obsolete data 

Semantic 
Redundant 
Data 

There are external data 
semantically equal or contained in 
other one 

Remove synonym data 

Computational 
Redundant 
Data 

There are derived data that are 
calculated with the same value in 
database 

Remove equivalent 
external data 

 

The design of the proposed fuzzy rule-based system follows 
the Mandami fuzzy controller configuration [9, 10], which is 
also knows as Fuzzy Inference System (FIS). The proposed FIS 
is justified by the fact that it can deal with the uncertainty [20], 
which mainly appears in three key parts of the FIS. 

• The software erosion symptoms (e.g., pollution, 
missing knowledge, coupling and anomalous data) are 
a combination of some metrics and they cannot be 
accurately established for a particular software 
system. Each software erosion symptom can be defined 
by a fuzzy set establishing the level (between 0 and 1) 
which the symptoms appear in a software system. 

• Metrics represent input, certain variables that decide 
each erosion symptoms. These precise values are taken 
from the measurement of certain aspects of the 
software (e.g., number of clone programs, number of 
dead data, etc). Nevertheless, each precise variable can 
become a fuzzy set in order to achieve fuzzy values of 
each erosion symptoms. 

• Output variables of the proposed FIS system are a set 
of maintenance actions. These actions are carried out in 
a fuzzy way. This is due to the fact that there is an 
uncertainty derived by the search of an agreement 
between cost and benefit (in terms of software erosion 
reduction) of the maintenance actions. As a 
consequence, the fuzzy definition of the output 

variables can establish fuzzy rules between inputs and 
outputs in the proposed FIS system. 

The remaining of this paper is organized as follows. Section 
II briefly show related work with this paper. Section III 
presents in detail the proposed FIS system. Section IV provides 
an implementation of the systems and Section V simulates the 
FIS system with a real-life software system. Finally, Section VI 
discusses conclusions and future work.  

II. RELATED WORK 
Software maintenance is a time-consuming and hard task, 

which requires most effort than software development 
throughout the software lifecycle [6]. The detection of software 
erosion in the maintenance activity is a key task to know if new 
maintenance actions are (or are not) necessary. For this reason, 
maintenance levels measurement has been widely studied in 
literature for many years. 

Hall et al. [4] provided a set of relations between some 
metrics and specific demands in different maintenance areas. 
Basili et al. [2] presented a study to deal with the prediction of 
maintenance process, although that work does not focus on the 
software erosion symptoms. Lehman et al. [8] also take into 
account the evolution of some metrics related to the 
maintenance activity. Hayes et al. [5] provide a recent model to 
estimate the human maintenance effort related to some 
maintenance metrics. However, that work does not consider the 
software erosion metrics and its relation with specific 
maintenance actions. Vissagio [19] provides a framework 
focusing on the relationship between software erosion metrics 
and the needed maintenance.  

All this work does not take the uncertain maintenance 
environments into account. For this reason, some works try to 
solve this problem through the fuzzy logic. For instance, Ning 
et al. [13] provide a learning system to predict software 
erosion. However, that work ignores the recommended 
maintenance actions, and in addition it focuses on application 
server. Mittal et al. [11, 12] provide a fuzzy logic technique to 
measure the maintainability level of software systems, but they 
do not find out the best set of maintenance actions either. 

In contrast, this paper proposes a fuzzy rule-based system 
to detect the level of a set of software erosion symptoms, as 
well as to recommend the most appropriate set of actions 
depending on the recognized symptoms. The main advantage 
of our proposal is that it not only employs fuzzy logic in the 
input (erosion symptoms), but also the output (maintenance 
actions) are treated through fuzzy logic. The uncertainty level 
of maintenance environments is therefore reduced by means of 
our proposal. 

III. FUZZY INFERENCE SYSTEM 
The proposed FIS system consists of a fuzzy rule-based 

system. This system considers metrics related to software 
erosion symptoms as inputs and provides a set of 
recommended actions as outputs. The architecture of the 
proposed FIS system (see Figure 1) consists of five sub-
systems organized in three levels: 
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• Metric level offers the input of the system, and is 
defined by the precise values measured from software 
systems according to the metrics presented in TABLE 
I. This level does not organize any subsystem. 

• Symptom level adapts each precise metric value to a 
specific fuzzy set. These fuzzy variables are the inputs 
of four fuzzy rule-based subsystems, i.e., one 
subsystem for each software erosion symptom (see 
TABLE I). Subsystems establish fuzzy rules to obtain 
the four fuzzy values for each symptom, i.e., pollution, 
missing knowledge, coupling and anomalous data (see 
Figure 1). 

• Diagnosis level defines a finite set of six maintenance 
actions according to the Vissagio framework (see 
Figure 1). This level contains the last subsystem, which 
takes the symptoms variables (obtained in the previous 
level) as input and generates fuzzy values concerning 
the maintenance actions as output (see Figure 1).  

 
Figure 1.  The proposed FIS architecture 

The FIS system allows maintainers to evaluate a software 
system. The FIS system provides specific membership degrees 
for each maintenance actions (established as fuzzy sets). A 
maintenance expert takes that information to modify the 
software system to mitigate its erosion symptoms. The 
proposed FIS system makes it possible the iterative and 
incremental maintenance according to the following process. 

Firstly, maintenance experts prioritize the set of 
maintenance actions by arranging the membership degrees of 
each action. Maintainers carry out the action with the highest 
membership value, then the second one, and so on. However, 
after the software system has been modified, some erosion 
symptoms might be reduced, but other symptoms could be 
worse. As a consequence, maintainers could carry out solely 
the first action, and then reevaluate the software system 
through the FIS system in order to know how the erosion 
symptoms have changed. 

Secondly, maintainers observe what symptoms were 
eradicated after the first iteration. When the software system is 
again evaluated, new membership degrees are obtained for 
each action. Maintainers start here a new iteration following 
the same steps. This incremental and iterative process finish 

when the membership degrees of actions represent negligible 
values. 

Moreover, maintenance experts who know the budget of 
the company and the available resources must establish a 
threshold value to stop the iterative process. For instance, if a 
company has a small budget for software maintenance, the 
maintainers can establish a higher threshold value around 0.5. 
This means that the maintenance actions with a lower 
membership degree than 0.5 (the threshold) will be ignored. As 
a consequence, the proposed FIS system aids the decision-
making process when companies want to maintain their 
software systems.  

The following subsections presents in detail the five 
subsystems grouped into the symptom level and diagnosis level 
(see Figure 1). Firstly, Subsection III.A provides the fuzzy set 
inputs for the four first levels related to erosion symptoms. 
Secondly, Subsection III.B presents the fuzzy set definition for 
the maintenance actions, the output of the last subsystem. 
Finally, Subsection 0 specifies all the rules concerning the five 
subsystems.  

A. Software Erosion Symptoms and Input Variables 
The software erosion symptoms level (see Figure 1) 

consists of four FIS subsystems. Each subsystem is in charge 
of evaluation of a symptom. Our proposal is based in the 
framework proposed by Vissagio [19], which characterizes the 
erosion of software systems by four symptoms: pollution, 
missing knowledge, coupling and anomalous data. 

Each subsystem takes certain values since according to a 
set of metrics, which are directly quantifiable by observing 
software systems. Both specific metrics (as input) and erosion 
symptoms (as outputs) are defined as a fuzzy set. TABLE II 
shows the fuzzy set definition of all the metrics. Each fuzzy 
sets defines its domain between 0 and 1, provides a set of 
linguistic labels, and specifies the specific trapezoids in 
numerical and graphical way for each label. TABLE III 
specifies the fuzzy sets for the subsystem outputs related to 
each software erosion symptom. 

The identified fuzzy sets were defined in a heuristic manner 
by taking into account the opinion of several maintenance 
experts. After collect information from different experts, that 
information was merged using the Delphi technique [15], 
which allows achieving a workable consensus within time 
limits. Despite this proposal, different fuzzy sets and linguistic 
labels could be proposed for the FIS system. Indeed, the 
mechanism employed in this paper to obtain the fuzzy sets is 
not the most appropriate. For instance, a better definition could 
imply a massive collection of information about real-life 
maintenance and development projects. Thereby, the fuzzy set 
could be obtained from this information through statistical 
analyses, or by means of learning systems based on fuzzy logic 
[1]. However, the definition of the optimal fuzzy sets is outside 
of the scope of this paper. 

Moreover, domains of all the fuzzy sets are defined 
between 0 and 1 considering the density ratio of each metric, 
since software systems can have different sizes. For instance, 
the cloned program metric is defined as the number of 
duplicate programs divided into the total number of programs 

 
M

ai
nt

en
an

ce
 

Computational 
Redundant Data 

Semantic Redundant 
Data 

Obsolete Data 

Useless Data 

Control Data 

Pathological Files 

Poor Lexicon 

Missing Functionalities 

Missing Documentation 

Dead Code 

Dead Data 

Sourceless Programs 

Obsolete Programs 

Clone Programs 

 
Anomalous Data 

 
Coupling 

Missing  
Knowledge 

 
Pollution 

Metrics Symptoms Diagnosis / Treatment 

A1. Rewrite source 
code through reverse 
engineering 

A2. Re-document 
through reverse 
engineering 

A3. Remove dead 
code and dead data 

A4. Refactoring / 
restructuring 

A5. Remove 
anomalous programs 

A6. Remove 
redundancies 
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of the software system (i.e., it represents the percentage of 
cloned programs). The remaining of metric values are 
accurately calculated in a similar way. 

TABLE II.  FUZZY SETS FOR THE INPUT METRICS 

St Metric 
Linguistic 

Label 
Trapezoids 

P
ol

lu
ti

on
 

Clone Programs 
{Low, 

Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

Obsolete 
Programs 

{Low, 
Medium, 

High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

Sourceless 
Programs 

{Low, 
Medium, 

High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

Dead Data 

{Null, Low, 
Medium, 

High, 
Maximum} 

{[-0.25 0 0.25], [0 
0.25 0.5], [0.25 0.5 
0.75], [0.5 0.75 1], 

[0.75 1 1.25]} 

Dead Code 

{Null, Low, 
Medium, 

High, 
Maximum} 

{[-0.25 0 0.25], [0 
0.25 0.5], [0.25 0.5 
0.75], [0.5 0.75 1], 

[0.75 1 1.25]} 

M
is

si
ng

 K
no

w
le

dg
e Missing 

Documentation 

{Low, 
Medium, 

High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

Missing 
Functionalities 

{Low, 
Medium, 

High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

Poor Lexicon 
{Low, 

Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

C
ou

pl
in

g 

Pathological 
Files 

{Null, Low, 
Medium, 

High, 
Maximum} 

{[-0.25 0 0.25], [0 
0.25 0.5], [0.25 0.5 
0.75], [0.5 0.75 1], 

[0.75 1 1.25]} 

Control Data 

{Null, Low, 
Medium, 

High, 
Maximum} 

{[-0.25 0 0.25], [0 
0.25 0.5], [0.25 0.5 
0.75], [0.5 0.75 1], 

[0.75 1 1.25]} 

A
no

m
al

ou
s 

D
at

a 

Useless Data 
{Low, 

Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 1], 
[0.5 1 1.5]} 

Obsolete Data 
{Low, 

Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 1], 
[0.5 1 1.5]} 

Semantic 
Redundant Data 

{Low, 
Medium, 

High} 

{[-0.5 0 0.5], [0 0.5 1], 
[0.5 1 1.5]} 

Computational 
Redundant Data 

{Low, 
Medium, 

High} 

{[-0.5 0 0.5], [0 0.5 1], 
[0.5 1 1.5]} 

TABLE III.  FUZZY SETS FOR THE EROSION SYMPTOMS 

Erosion 
Symptom 

Linguistic 
Label 

Trapezoids 

Pollution 
{Null, Low, 

Medium, High, 
Maximum} 

{[-0.25 0 0.25], [0 0.25 0.5], 
[0.25 0.5 0.75], [0.5 0.75 1], 

[0.75 1 1.25]} 

Missing 
Knowledge 

{Low, Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 1], [0.5 1 
1.5]} 

Coupling 
{Null, Low, 

Medium, High, 
Maximum} 

{[-0.25 0 0.25], [0 0.25 0.5], 
[0.25 0.5 0.75], [0.5 0.75 1], 

[0.75 1 1.25]} 

Anomalous 
Data 

{Low, Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 1], [0.5 1 
1.5]} 

B. Maintenance Actions and Output Variables 
The diagnosis level depicted in Figure 1 contains a sole FIS 

subsystem. This subsystem takes as input the fuzzy outputs of 
symptoms subsystems of the previous level, and it generates as 
final output the fuzzy values for each maintenance action. For 
this purpose, six predefined actions (identified from A1 to A6) 
have been selected according to the Vissagio framework (see 
TABLE I). 

• A1. Rewrite source code through reverse engineering. 
Reverse engineering techniques are used to discover 
embedded or missing knowledge. After that, new 
executable source code is generated. This action 
mainly addresses the pollution and missing knowledge 
symptom. 

• A2. Re-document through reverse engineering. This 
action is very similar than previous one, however the 
objective of reverse engineering is to extract 
meaningful information about the software system 
instead source code generation. This action deals with 
the missing knowledge symptom. 

• A3. Remove dead code and dead data. This action 
analyses and removes lines of dead code as well as 
data that are not reached. This action mainly deals with 
the pollution symptom. 

• A4. Refactoring / restructuring. This action reorganizes 
and restructures the software system in order to deal 
with any erosion symptom. 

• A5. Remove anomalous programs. This action remove 
programs in order to eradicate erroneous programs, 
i.e., duplicated programs, obsolete programs, programs 
that generate pathological files, and so on. It mainly 
addresses the pollution and anomalous data symptom. 

• A6. Remove redundancies. This action removes those 
redundant data from the semantic and computational 
viewpoint, thus it deals with the anomalous data 
symptom. 

TABLE IV.  FUZZY SETS FOR THE MAINTENANCE ACTIONS 

Maintenance Action Linguistic 
Label 

Trapezoids 

A1. Rewrite source 
code through reverse 
engineering. 

{Low, Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

A2. Re-document 
through reverse 
engineering. 

{Low, Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

A3. Remove dead 
code and dead data 

{Low, Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

A4. Refactoring / 
restructuring 

{Low, Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

A5. Remove 
anomalous programs 

{Low, Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 

A6. Remove 
redundancies 

{Low, Medium, 
High} 

{[-0.5 0 0.5], [0 0.5 
1], [0.5 1 1.5]} 
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These actions can fully or partially address one or more 
erosion symptoms. The output of the last subsystem provides a 
membership value for each action. In order to establish fuzzy 
rules between symptoms and the set of actions, these actions 
must be defined as fuzzy sets. TABLE IV shows the fuzzy sets 
defined in the proposed FIS system. These fuzzy sets were also 
established using the Delphi technique by involving 
information provided by maintenance experts. 

C. Fuzzy Rules 
Finally, to complete the definition of the FIS system, a set 

of fuzzy rules must be established to able the inference of an 
entire diagnosis of a software system. Fuzzy rules are if-then 
rules with a three-part process: Firstly, the precise metric 
values are fuzzified with the metric fuzzy sets (see TABLE II). 
Thus, all fuzzy inputs in the antecedent are resolved as a 
membership degree between 0 and 1. If the antecedent involves 
only one fuzzy set, then this is the degree of support for the 
rule. Secondly, fuzzy logic operators (e.g. and, or) are applied 
to multiple part antecedents. These operators resolve the 
antecedent to a single number between 0 and 1, which is the 
degree of support for the rule. Thirdly, the degree of support 
for the entire rule is used to shape the output fuzzy set, i.e., the 
consequent of the fuzzy rule. If the antecedent is partially true 
(i.e., its membership value is lower than 1), then the output 
fuzzy set is truncated according to the implication method. 

On the one hand, a set of fuzzy rules are established to 
define the outputs related to the four symptoms subsystems: 
pollution, missing knowledge, Coupling and Anomalous Data. 

Pollution fuzzy rules: 
1. If (CloneProg is low) and (SourcelessProg is low) then (Pollution is null) 
2. If (CloneProg is medium) and (SourcelessProg is low) then (Pollution is low) 
3. If (CloneProg is high) and (SourcelessProg is low) then (Pollution is high) 
4. If (CloneProg is medium) and (SourcelessProg is medium) then (Pollution is high) 
5. If (CloneProg is medium) and (SourcelessProg is high) then (Pollution is maximum) 
6. If (CloneProg is high) and (SourcelessProg is high) then (Pollution is maximum) 
7. If (ObsoleteProg is low) and (DeadData is null) and (DeadCode is null) then (Pollution is 

null) 
8. If (ObsoleteProg is medium) and (DeadData is low) and (DeadCode is low) then (Pollution is 

low) 
9. If (ObsoleteProg is medium) and (DeadData is medium) and (DeadCode is medium) then 

(Pollution is low) 
10. If (ObsoleteProg is medium) and (DeadData is high) and (DeadCode is high) then (Pollution 

is medium) 
11. If (ObsoleteProg is medium) and (DeadData is maximum) and (DeadCode is maximum) 

then (Pollution is high) 
12. If (ObsoleteProg is high) and (DeadData is maximum) and (DeadCode is maximum) then 

(Pollution is maximum) 
13. If (ObsoleteProg is high) and (DeadData is high) and (DeadCode is high) then (Pollution is 

high) 
14. If (ObsoleteProg is high) and (DeadData is medium) and (DeadCode is medium) then 

(Pollution is medium) 
15. If (CloneProg is high) and (ObsoleteProg is high) and (SourcelessProg is high) then 

(Pollution is maximum) 
16. If (CloneProg is low) and (ObsoleteProg is low) and (SourcelessProg is low) and (DeadData 

is null) and (DeadCode is null) then (Pollution is high) 

Missing Knowledge fuzzy rules: 
1. If (MissingDocument is low) and (MissingFunct is low) and (PoorLexicon is low) then 

(MissingKnowledge is low) 
2. If (MissingDocument is low) and (MissingFunct is low) and (PoorLexicon is medium) then 

(MissingKnowledge is low) 

3. If (MissingDocument is low) and (MissingFunct is medium) and (PoorLexicon is low) then 
(MissingKnowledge is medium) 

4. If (MissingDocument is medium) and (MissingFunct is medium) and (PoorLexicon is low) 
then (MissingKnowledge is medium) 

5. If (MissingDocument is medium) and (MissingFunct is medium) and (PoorLexicon is 
medium) then (MissingKnowledge is medium) 

6. If (MissingDocument is high) and (MissingFunct is medium) and (PoorLexicon is low) then 
(MissingKnowledge is medium) 

7. If (MissingDocument is not low) and (MissingFunct is high) and (PoorLexicon is not low) 
then (MissingKnowledge is high) 

8. If (MissingDocument is low) and (MissingFunct is high) and (PoorLexicon is low) then 
(MissingKnowledge is medium) 

Coupling fuzzy rules: 
1. If (PathologicalFiles is not maximum) and (ControlData is maximum) then 

(Coupling is maximum) 
2. If (PathologicalFiles is high) and (ControlData is maximum) then (Coupling is 

maximum) 
3. If (PathologicalFiles is high) and (ControlData is high) then (Coupling is maximum) 
4. If (PathologicalFiles is medium) and (ControlData is high) then (Coupling is high) 
5. If (PathologicalFiles is medium) and (ControlData is medium) then (Coupling is 

medium) 
6. If (PathologicalFiles is low) and (ControlData is medium) then (Coupling is 

medium) 
7. If (PathologicalFiles is low) and (ControlData is low) then (Coupling is low) 
8. If (PathologicalFiles is null) and (ControlData is low) then (Coupling is low) 
9. If (PathologicalFiles is null) and (ControlData is null) then (Coupling is null) 

Anomalous Data fuzzy rules: 
1. If (SemRedundant is not high) and (CompRedundant is not high) then 

(AnomalousData is not high) 
2. If (SemRedundant is medium) and (CompRedundant is not low) then 

(AnomalousData is medium) 
3. If (SemRedundant is medium) and (CompRedundant is not medium) then 

(AnomalousData is medium) 
4. If (SemRedundant is high) and (CompRedundant is not high) then (AnomalousData is 

high) 
5. If (UselessData is not low) and (ObsoleteData is not low) and (SemRedundant is not 

low) and (CompRedundant is not low) then (AnomalousData is not low) 
6. If (UselessData is high) and (ObsoleteData is high) and (SemRedundant is not low) 

and (CompRedundant is not low) then (AnomalousData is high) 
7. If (UselessData is medium) and (SemRedundant is high) then (AnomalousData is 

high) 
8. If (ObsoleteData is medium) and (SemRedundant is high) then (AnomalousData is 

high) 
9. If (ObsoleteData is medium) and (CompRedundant is high) then (AnomalousData is 

high) 

On the other hand, after establishing fuzzy rules concerning 
the FIS subsystems of symptom level, the set of rules of the 
action subsystem must be also defined. These rules were 
established in the similar way than the previous sets. 

Maintenance Actions fuzzy rules: 
1. If (Pollution is not low) then (A1 is high)(A3 is medium)(A5 is medium) 
2. If (MissingKnowledge is high) then (A1 is medium)(A2 is medium)(A4 is low) 
3. If (MissingKnowledge is not low) and (AnomalousData is not low) then (A4 is 

medium) 
4. If (AnomalousData is high) then (A5 is medium)(A6 is high) 
5. If (AnomalousData is not high) then (A5 is low)(A6 is medium) 
6. If (Pollution is medium) and (AnomalousData is not low) then (A4 is low)(A6 is 

medium) 
7. If (Coupling is not low) then (A4 is alto)(A5 is medium) 
8. If (Coupling is high) then (A4 is alto)(A5 is low) 
9. If (Pollution is low) and (MissingKnowledge is low) then (A1 is low)(A2 is low) 
10. If (Pollution is low) then (A3 is low) 

IV. IMPLEMENTATION 
This paper also provides an implementation of the proposed 

FIS system in order to demonstrate its feasibility and facilitate 
its adoption. The FIS system has been implemented using the 
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Fuzzy Logic Toolbox of Matlab [17]. In addition, the FIS’s real 
performance has been also simulated by means of Simulink 
[18], another Matlab module. 

The implementation of the FIS system using the Fuzzy 
Logic Toolbox was carried out following a set of steps for each 
aforementioned FIS subsystem. Due to space limitations, it 
focuses in the Coupling subsystem to illustrate the entire 
implementation process. 

1. The inputs and output of the FIS system are firstly 
selected. Relationships between the input fuzzy 
variables and output fuzzy variables are established. 
This task can be easily carried out by means of the FIS 
Editor of Matlab (see Figure 2). The type of the FIS 
subsystem can be also selected by means of that editor. 
All subsystem are based in the Mandami controller 
configuration [9, 10].  

2. In the second step, input and output fuzzy variables are 
defined by means of fuzzy sets. Each fuzzy variable 
has several linguistic labels and each label is defined as 
a fuzzy set. This task is also performed through the 
Matlab FIS editor according to the fuzzy variables 
presented in Section III. For instance, Figure 3 shows 
the definition of the fuzzy set for the ‘null’ linguistic 
label within ‘PathologicalFiles’ input variable in the 
Coupling subsystem. 

3. The third step involves the fuzzy rules definition. This 
task establishes specific relationship through the 
linguistic labels of both input and output fuzzy 
variables. Matlab also provides a graphical editor to 
easily generate fuzzy rules. 

4. Finally, the logic operators as well as the implication 
and defuzzification operations must be established 
through the Matlab FIS editor (see Figure 2). The ‘and’ 
and ‘or’ logic operators are used in antecedents of 
fuzzy rules to combine several fuzzy sets. In this case 
we respectively select the minimum and maximum 
operators to combine several fuzzy sets. These 
operators are well-known and commonly used to 
represent the intersection (and) and union (or) of fuzzy 
sets. Moreover the implication function is selected in 
this step. The implication function is used to obtain a 
membership value in the consequent fuzzy set from the 
membership value of the antecedent. This FIS system 
uses the minimum operation. Another operation that 
must be established is the aggregation function. This 
function merges all membership values obtained in a 
particular fuzzy set that appears in consequents of 
several rules. The FIS system uses the maximum 
operation since it guarantees to obtain the higher value 
obtained for a particular fuzzy set. Finally, a 
deffuzzification function must be selected to obtain a 
real value between 0 and 1from the aggregated area 
obtained in a particular consequent fuzzy set. The 
proposed FIS system uses the centroid function, which 
use the weighted average of a few data points in the 
aggregated area. 

 
Figure 2.  The FIS subsystem configuration for the coupling symptom 

 
Figure 3.  Fuzzy set definition for the coupling subsystem 

V. SIMULATION 
To simulate the FIS system implemented though the 

Matlab Fuzzy Logic Toolbox, we use Simulink [18]. Simulink is 
an environment for multi-domain simulation and model-based 
design for dynamic and embedded systems. It makes it possible 
to simulate, implement, and test a variety of time-varying 
systems. 

Figure 4 shows the simulation model of the proposed FIS 
system, which is built in Simulink as a fuzzy logic controller 
following the architecture presented in Figure 1. Firstly, the 
fuzzy logic controller will receive the precise values of the all 
maintenance metrics, and it then will trigger the respective 
fuzzy rules of the four subsystems in the symptom level. 
Outputs of the symptom subsystems are used as the input for 
the maintenance subsystem, which generates the membership 
degree (as a value between 0 and 1) to each of the six possible 
maintenance actions. In addition, the controller filters out 
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actions under the aforementioned maintenance threshold, 
which can be established by maintenance experts in each 
company. As a consequence, the controller indicates by means 
a light what actions should be carried out. 

In order to simulate the performance of the FIS system, a 
real-life software system was evaluated. The software system 
named VillasanteLab manages the operation of a Spanish 
company in the water and waste industry. VillasanteLab 
system manages information related to chemical laboratories, 
customers and products such as chemical analysis, dilutions, 
and chemical calibrations. The analyses supported by the 
application examined different parameters, including a large 
number of physical, chemical and microbiological parameters 
according to current regulations and laws for controlling water 
quality. From a technological point of view, VillasanteLab 
system is a traditional web application developed using Java 
platform and consists of 28.800 lines of source code. This 
software system was released for four years ago, and it has had 
three major modifications with seven medium modifications in 
total. Therefore, the VillasanteLab system probably has been 
eroded over time. 

Firstly, all the maintenance metrics used in our FIS system 
were accurately evaluated. TABLE V shows the fourteen 
metric values obtained after evaluating the VillasanteLab 
system. These values were introduced in the simulation model 
and the model was then executed in Simulink (see Figure 4). 
The obtained results for the erosion symptoms were 
respectively 0.2, 0.5, 0.5 and 0.4; and the final results 
concerning maintenance actions were 0.80, 0.50, 0.43, 0.55, 
0.41 and 0.5 (see TABLE V). In addition, the fuzzy rules 
executed as well as the fuzzy sets values were obtained during 
simulation (see Figure 5). 

The configuration of simulation considers a maintenance 
threshold of 0.5. Therefore, the recommended maintenance 
actions for the VillasanteLab system were A1. Rewrite source 
code through reverse engineering as well as A4. Refactoring / 
restructuring. 

VI. CONCLUSIONS 
This paper presented a fuzzy rule-based system (also 

known as Fuzzy Inference System) to find out the software 
erosion symptoms of a concrete software system. The proposed 
FIS system does not only diagnose the kind of software 
erosion, but also recommend the best treatment for the eroded 
system. We refer to “the best treatment” as a set of 
maintenance actions that must be carried out to reduce or 
mitigate the software those erosion symptoms without 
incurring in more erosion itself. 

The design of the FIS system was mainly divided into two 
levels. The first level evaluates the erosion symptoms, which 
consists of four subsystems (one for each symptom). Each 
subsystem accepts as input metrics accurately measured from 
the software system. These precise values are then fuzzified 
and a set of fuzzy rules establish as output the membership 
degrees for each symptom subsystem. The second level has 
only one subsystem, which takes the fuzzy values of each 
symptom subsystem and it obtains the membership degrees for 
each candidate maintenance action. 

 
Figure 4.  Simulation model for the proposed FIS system 

TABLE V.  SIMULATION DATA FOR AN EXISTING SOFTWARE SYSTEM 

Metric Precise 
Value Symptom Value Action Value

Clone Programs 0.30 

Pollution 0.229 

A1 0.804 
Obsolete Programs 0.20 
Sourceless Programs 0 

A2 0.500 
Dead Data 0.10 
Dead Code 0.15 

A3 0.427 
Missing Documentation 0.80 

Missing 
Knowledge 0.500 Missing Functionalities 0 

A4 0.546 
Poor Lexicon 0.20 
Pathological Files 0 

Coupling 0.500 A5 0.413 
Control Data 0.50 
Useless Data 0.40 

Anomalous 
Data 0.386 

A6 0.500 
Obsolete Data 0 
Semantic Redundant Data 0.20 

 
Computational Redundant Data 0 

 

 
Figure 5.  Obtained results during simulation 
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In order to validate the feasibility of our proposal and its 
adoption, the proposed FIS system was also implemented in 
Matlab using the fuzzy logic toolbox. Furthermore, the 
implemented system was also simulated through Simulink. The 
advantage of the implemented simulation system is that 
maintainers can know the best set of maintenance actions to be 
carried out. The set of actions is prioritized, which helps 
maintainers to distribute maintenance resources and efforts. In 
addition, maintainers can estimate the reduction of erosion 
metrics in the hypothetical case to carry out the recommended 
actions. As a consequence, they might simulate a set of 
iterations of incremental maintenance and predict by means of 
our system the expected reduction of erosion symptoms. If a 
simulation shows that the software system is much eroded and 
a lot of maintenance effort will be necessary, the system could 
be discarder without starting the maintenance process. In 
conclusion, the proposed FIS system supports the decision-
making process in the maintenance stage, and it can save 
maintenance cost by means of the proposed simulation model. 

Moreover, the simulation of our system allowed us to detect 
potential improvements for the FIS system. Those 
improvements were progressively applied to adjust the 
definition of fuzzy sets. In addition, the rules were established 
by experts according to the Delphi technique and they were 
progressively improved through the simulation. However, the 
Delphi technique adopted to establish the rules is not the best 
approach, since it has a heuristic nature. As a consequence, we 
propose as future work the improvement of the fuzzy rules by 
using statistical techniques from real-life maintenance data or 
learning systems to find out the optimum fuzzy rules. 
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