
APRIL 11-15, 2011
PARIS, FRANCE

SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE
SSCI2011
IEEE

IEEE Catalog Number: CFP1106N-CDR

© 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

Technical Support:
Chris Dyer
Conference Catalysts, LLC
Phone: +1 785 341 3583
cdyer@conferencecatalysts.com Organized and sponsored by the IEEE Computational Intelligence Society

2011 IEEE Symposium on
Computational Intelligence in Dynamic and Uncertain Environments

ISBN: 978-1-4244-9929-8

CIDUE 2011

Author Index

Table of Contents
Technical Sessions

© 2011 IEEE

2011 IEEE Symposium on Computational Intelligence in Dynamic and Uncertain
Environments

(CIDUE 2011) Proceedings

© 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

Additional copies may be ordered from:
 IEEE Service Center
 445 Hoes Lane
 Piscataway, NJ 08855-1331 USA

+1 800 678 IEEE (+1 800 678 4333)
+1 732 981 1393
+1 732 981 9667 (FAX)
email: customer-service@ieee.org

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are
permitted to photocopy beyond the limit of U.S. copyright law, for private use of patrons, those articles in
this volume that carry a code at the bottom of the first page, provided that the per-copy fee indicated in
the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.
Other copy, reprint, or reproduction requests should be addressed to IEEE Copyrights Manager, IEEE
Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331. All rights reserved.
Copyright © 2011 by the Institute of Electrical and Electronics Engineers, Inc.

IEEE Catalog Number: CFP1106N-CDR
ISBN: 978-1-4244-9929-8

iii

TABLE OF CONTENTS

CIDUE 2011 COMMITTEE ... v
CIDUE KEYNOTES ... vi
CIDUE 2011 TECHNICAL SESSIONS .. 1

Wednesday, April 13

11:00 - 12:00

S62: CIDUE - Keynote
Chair: Yaochu Jin (University of Surrey, United Kingdom)

Fuzzy Systems for Scenario Modelling and Analysis

Qiang Shen (Aberystwyth University, United Kingdom)

13:40 - 16:00

S63: Computational Intelligence in Dynamic and Uncertain Environment
Chairs: Yaochu Jin (University of Surrey, United Kingdom), Robi Polikar (Rowan University, USA)

Genetic Algorithms with Elitism-based Immigrants for Dynamic Load Balanced Clustering Problem in
Mobile Ad Hoc Networks ... 1

Hui Cheng (University of Bedfordshire, United Kingdom);
Shengxiang Yang (Brunel University, United Kingdom)

An Adaptive Strategy for Updating the Memory in Evolutionary Algorithms for Dynamic Optimization 8
Tao Zhu (University of Science and Technology of China, China)
Wenjian Luo (University of Science and Technology of China, China)
Zhifang Li (University of Science and Technology of China, China)

Trusted Learner: An Improved Algorithm for Trusted Incremental Function Approximation 16
Andreas Buschermoehle (University of Osnabrueck, Germany)
Jan Schoenke (University of Osnabrueck, Germany)
Werner Brockmann (University of Osnabrueck, Germany)

Theoretical and Empirical Analysis of Diversity in Non-Stationary Learning .. 25

Richard Stapenhurst (University of Manchester, United Kingdom)
Gavin Brown (University of Manchester, United Kingdom)

iFAST: An Intelligent Fire-Threat Assessment and Size-up Technology for First Responders 33

H. Mohammadi (Ryerson University, Canada)
A. Sadeghian (Ryerson University, Canada)

Hellinger Distance Based Drift Detection for Nonstationary Environments .. 41
Gregory Ditzler (Rowan University, USA)
Robi Polikar (Rowan University, USA)

iv

16:00 - 16:30

PS8: CIDUE - 2011
Poster Session

Diagnosis of Software Erosion through Fuzzy Logic ... 49

Ricardo Pérez-Castillo (University of Castilla-La Mancha, Spain)
Ignacio García Rodríguez de Guzmán (University of Castilla-La Mancha, Spain)
Mario Piattini (University of Castilla-La Mancha, Spain)

16:30 - 17:30

S64: CIDUE - Keynote
Chair: Robi Polikar (Rowan University, USA)

From Heuristics to Statistics: an Overview of the ADEPT Project
 Gavin Brown (University of Manchester, United Kingdom

AUTHOR INDEX .. 57

v

IEEE CIDUE 2011 Committee

Symposium on Computational Intelligence in Dynamic and Uncertain Environments
(IEEE CIDUE 2011)

Computational Intelligence (CI) methodologies, including evolutionary algorithms, neural networks and fuzzy
systems have shown to be sell suited to deal with significant uncertainties that may be encountered in solving
real-world problems. The purpose of this symposium is to bring together scientists, engineers, and graduate
students to present and discuss recent advances in employing CI for solving scientific and engineering problems
in the presence of uncertainties.

Symposium Co-Chairs
Yaochu Jin, University of Surrey, UK
Shengxiang Yang, Brunel University, UK
Robi Polikar, Rowan University, USA

Program Committee
Cesare Alippi, Politecnico di Milano, Italy
Gavin Brown, University of Manchester, UK
Chaochang Chiu, Yuan Ze University, ROC
Ernesto Costa, University of Coimbra, Portugal
Moufid Harb, Larus Technologies Corp., Canada
Haibo He, University of Rhode Island , USA
Yan Meng, Stevens Institute of Technology, USA
Ferrante Neri, University of Jyvaskyla, Finland
Yew-Soon Ong, Nanyang Technological University, Singapore
David Pelta, University of Granada, Spain
Hendrik Richter, University of Leipzig, Germany
Chuan-Kang Ting, National Chung Cheng University, ROC
Mauro Tucci, University of Pisa, Italy
Sima Uyar, Istanbul Technical University, Turkey

vi

Fuzzy Systems for Scenario Modelling and Analysis

Qiang Shen
Aberystwyth University, United Kingdom

Solving complex real-world problems usually requires timely and intelligent decision-making. This requires the
analysis of a large volume of vague and indiscernible information. For example, intelligence experts have
commented that the failure in detection of terrorist activity is often due to the difficulty in relating and interpreting
the available intelligence on time, rather than a lack of data. Whilst experienced analysts can suggest plausible
scenarios, the sheer amount of possibly relevant data may not be humanly interpretable in a short time-frame.
The hypothetical (re-)construction of the activities that may have generated the intelligence data, therefore,
presents an interesting and significant research topic. This talk will present a knowledge-based framework for the
development of intelligent decision support systems under uncertain environments. This helps to assist (but not to
replace) intelligence analysts by: a) identifying plausible scenarios of criminal or terrorist activity, and b) assessing
the reliability, risk and urgency of generated hypotheses. In particular, the talk will introduce an integrated use of
some recent advances in fuzzy systems for the monitoring and interpretation of intelligence data. Employing such
advanced approaches offers an effective means for the generation and assessment of plausible scenarios. The
work has the potential to facilitate rapid response in devising and deploying preventive measures. This talk will
conclude with a discussion about the expansion of the techniques to encompass novel problem domains as well
as some important challenges which lie ahead.

From Heuristics to Statistics: An Overview of the ADEPT project

Gavin Brown

University of Manchester, United Kingdom

ADEPT (Adaptive Dynamic Ensemble Prediction Techniques) is a multi-site UK research council project, aiming
to capitalize on the synergistic interface between three fields: evolutionary computation, ensemble learning, and
probabilistic modelling. I will present our experiences with a paradigm from the evolutionary computation literature
- Learning Classifier Systems - and their subsequent translation into an ensemble-based probabilistic model. The
probabilistic model can precisely reproduce the capabilities of the LCS - an online supervised learning system,
continuously adaptive, maintaining a parsimonious set of human-interpretable rules. However, the new model
stands apart from the parameter-laden heuristic nature of LCS, having the advantages of a statistical
underpinning: flexibility and a solid probabilistic foundation. This talk will give a whistlestop tour of the project,
from the first experiences with voting systems and Adaboost, through to our current emphasis on non-stationary
rule learning.

Diagnosis of Software Erosion through Fuzzy Logic
Ricardo Pérez-Castillo, Ignacio García Rodríguez de Guzmán and Mario Piattini

Alarcos Research Group, University of Castilla-La Mancha
Paseo de la Universidad, 4 13071,

Ciudad Real, Spain
{ricardo.pdelcastillo, ignacio.grodriguez, mario.piattini}@uclm.es

Abstract— Companies have a vast number of existing software
systems, which are not immune to software erosion and ageing as
a consequence of uncontrolled maintenance over time. Currently,
there are several metrics to measure and quantify software
erosion, which also recommends some maintenance actions to
deal with software erosion. Unfortunately, there are many
symptoms at the same time and several possible maintenance
actions that could be carried out. As a consequence, this
uncertain environment implies that the best set of actions is
unknown and cannot be certainly linked to specific detected
erosion symptoms. This paper provides a fuzzy rule-based system
to address that challenge. The system is divided into two levels:
the first one recognizes precise software erosion metrics and
provides fuzzy software erosion symptoms; and the second one
takes the fuzzy symptoms and finally obtains fuzzy maintenance
actions. This system is therefore a decision-making mechanism to
select the best set of actions depending on the specific software
erosion symptoms. This system has been implemented using the
Matlab Fuzzy Logic Toolbox and it was simulated using
Simulink.

Keywords. Fuzzy Rule-Based System; Software Erosion;
Maintenance; Decision-Macking.

I. INTRODUCTION
According to the Lehman’s first law, a software system

must continually evolve or it will become progressively less
suitable in real-world environments [8]. Indeed, companies
count on a vast number of existing software systems which are
not immune to software erosion and software ageing, i.e.,
existing software systems that become progressively less
maintainable [14].

The successive changes in a software system degrade its
quality, and thus, a new and improved system should replace
the previous one. However, the wholesale replacement of these
systems from scratch is risky since it has a great impact in
technological, human and economic terms [7, 16]. The
technological and human point of view is affected since
replacement would involve retraining all the users in order to
understand the new system and the new technology, or the new
system may lack specific functionalities that are missing due to
the technological changes. Moreover, the economic point of
view is also affected since the replacement of an entire legacy
system implies a low Return of Investment (ROI) in that
system. In addition, the development or purchase of a new
system could exceed a company’s budget.

In order to address the phenomenon of software erosion, the
evolutionary maintenance is a better solution to obtain
improved systems, without discarding the existing systems,
thus minimizing the software erosion effects. Evolutionary
maintenance makes it possible to manage controllable costs
and preserves the valuable business knowledge embedded in
the legacy system, since 78% of maintenance changes are
corrective or behavior-preserving [3].

When companies are faced with the phenomenon of
software erosion, they have two main challenges. Firstly, they
should know how their systems’ erosion levels are, i.e., the
erosion symptoms. Secondly, companies should know the best
set of maintenance actions to carry out in order to solve, or at
least mitigate, those detected symptoms. In addition, the
selected actions should be carried out carefully without
committing more erosion problems. There are some works in
the literature addressing software erosion symptoms detection.
A common and widely-used diagnosis framework was
proposed by Vissagio [19]. That framework recognizes a set of
symptoms for the diagnosis of software erosion, as well as a set
of formal metrics to measure those symptoms. In addition, this
framework provides some maintenance actions to address each
symptom. TABLE I summarizes symptoms, metrics and
maintenance actions proposed by Vissagio [19].

The metrics proposed in that framework can be accurately
scored by observing software systems and counting the specific
elements (e.g., the number of clone programs, number of dead
lines of source code, and so forth). However, the recommended
maintenance actions usually are carried out in an uncertainly
environment, since there are similar actions that are the same
for different erosion symptoms (e.g. refactor, reverse
engineering, etc). In addition, some actions while solve some
symptoms could make another symptoms worse. Establishing
certainly relationships between symptoms and actions is
therefore a hard task.

This paper proposes a fuzzy rule-based system to address
the uncertainty in the decision-making process related to select
the most appropriate set of maintenance actions to eradicate
software erosion symptoms. The objective of this paper is to
propose a fuzzy diagnosis system to detect software erosion
symptoms, which makes it possible to select the most
appropriate set of maintenance actions. That is, a set of actions
that reduce the maintenance effort (and therefore the
maintenance cost), and minimize the erosion symptoms in a
higher level.

978-1-4244-9929-8/11/$26.00 ©2011 IEEE 49

TABLE I. FRAMEWORK TO MEASURE EROSION SYMPTOMS AND
RECOMMENDED MAINTENANCE ACTIONS (ADAPTED FROM [19])

Sint. Metric Description Action

P
ol

lu
ti

on

Clone
Programs

There are duplicate programs from
a functional viewpoint

Indentify most update
version and remove the
remaining clones

Obsolete
Programs

There are source code files without
its corresponding executable file

Remove obsolete
programs

Sourceless
Programs

There are executables files without
its corresponding source file to be
maintained

Rewrite source code by
means of reverse
engineering

Dead Data
There are created data that are not
used by the programs

Remove pieces of source
code that create dead data

Dead Code
There are pieces of source code
that cannot be reached by the
control flow

Remove dead code

M
is

si
ng

K

no
w

le
dg

e

Missing
Documentation

There are pieces of source code
without documentation

Re-document through
reverse engineering

Missing
Functionalities

There are some functionalities that
are not met for any program

Create, split or modify
programs to support those
functionalities

Poor Lexicon There are data and programs with
inconsistent names

Rename and refactor

C
ou

pl
in

g Pathological
Files

There are files that can be created
or modified by several programs

Refactor by means of
reverse engineering

Control Data There are data that control the
execution flow of several programs

Refactor by removing
control data

A
no

m
al

ou
s

D
at

a

Useless Data
There are external data (e.g.,
databases) that are not used for any
program

Remove programs that
create obsolete data

Obsolete Data
There are external data files
created by a program that are not
updated by any program

Remove programs that
create obsolete data

Semantic
Redundant
Data

There are external data
semantically equal or contained in
other one

Remove synonym data

Computational
Redundant
Data

There are derived data that are
calculated with the same value in
database

Remove equivalent
external data

The design of the proposed fuzzy rule-based system follows
the Mandami fuzzy controller configuration [9, 10], which is
also knows as Fuzzy Inference System (FIS). The proposed FIS
is justified by the fact that it can deal with the uncertainty [20],
which mainly appears in three key parts of the FIS.

• The software erosion symptoms (e.g., pollution,
missing knowledge, coupling and anomalous data) are
a combination of some metrics and they cannot be
accurately established for a particular software
system. Each software erosion symptom can be defined
by a fuzzy set establishing the level (between 0 and 1)
which the symptoms appear in a software system.

• Metrics represent input, certain variables that decide
each erosion symptoms. These precise values are taken
from the measurement of certain aspects of the
software (e.g., number of clone programs, number of
dead data, etc). Nevertheless, each precise variable can
become a fuzzy set in order to achieve fuzzy values of
each erosion symptoms.

• Output variables of the proposed FIS system are a set
of maintenance actions. These actions are carried out in
a fuzzy way. This is due to the fact that there is an
uncertainty derived by the search of an agreement
between cost and benefit (in terms of software erosion
reduction) of the maintenance actions. As a
consequence, the fuzzy definition of the output

variables can establish fuzzy rules between inputs and
outputs in the proposed FIS system.

The remaining of this paper is organized as follows. Section
II briefly show related work with this paper. Section III
presents in detail the proposed FIS system. Section IV provides
an implementation of the systems and Section V simulates the
FIS system with a real-life software system. Finally, Section VI
discusses conclusions and future work.

II. RELATED WORK
Software maintenance is a time-consuming and hard task,

which requires most effort than software development
throughout the software lifecycle [6]. The detection of software
erosion in the maintenance activity is a key task to know if new
maintenance actions are (or are not) necessary. For this reason,
maintenance levels measurement has been widely studied in
literature for many years.

Hall et al. [4] provided a set of relations between some
metrics and specific demands in different maintenance areas.
Basili et al. [2] presented a study to deal with the prediction of
maintenance process, although that work does not focus on the
software erosion symptoms. Lehman et al. [8] also take into
account the evolution of some metrics related to the
maintenance activity. Hayes et al. [5] provide a recent model to
estimate the human maintenance effort related to some
maintenance metrics. However, that work does not consider the
software erosion metrics and its relation with specific
maintenance actions. Vissagio [19] provides a framework
focusing on the relationship between software erosion metrics
and the needed maintenance.

All this work does not take the uncertain maintenance
environments into account. For this reason, some works try to
solve this problem through the fuzzy logic. For instance, Ning
et al. [13] provide a learning system to predict software
erosion. However, that work ignores the recommended
maintenance actions, and in addition it focuses on application
server. Mittal et al. [11, 12] provide a fuzzy logic technique to
measure the maintainability level of software systems, but they
do not find out the best set of maintenance actions either.

In contrast, this paper proposes a fuzzy rule-based system
to detect the level of a set of software erosion symptoms, as
well as to recommend the most appropriate set of actions
depending on the recognized symptoms. The main advantage
of our proposal is that it not only employs fuzzy logic in the
input (erosion symptoms), but also the output (maintenance
actions) are treated through fuzzy logic. The uncertainty level
of maintenance environments is therefore reduced by means of
our proposal.

III. FUZZY INFERENCE SYSTEM
The proposed FIS system consists of a fuzzy rule-based

system. This system considers metrics related to software
erosion symptoms as inputs and provides a set of
recommended actions as outputs. The architecture of the
proposed FIS system (see Figure 1) consists of five sub-
systems organized in three levels:

50

• Metric level offers the input of the system, and is
defined by the precise values measured from software
systems according to the metrics presented in TABLE
I. This level does not organize any subsystem.

• Symptom level adapts each precise metric value to a
specific fuzzy set. These fuzzy variables are the inputs
of four fuzzy rule-based subsystems, i.e., one
subsystem for each software erosion symptom (see
TABLE I). Subsystems establish fuzzy rules to obtain
the four fuzzy values for each symptom, i.e., pollution,
missing knowledge, coupling and anomalous data (see
Figure 1).

• Diagnosis level defines a finite set of six maintenance
actions according to the Vissagio framework (see
Figure 1). This level contains the last subsystem, which
takes the symptoms variables (obtained in the previous
level) as input and generates fuzzy values concerning
the maintenance actions as output (see Figure 1).

Figure 1. The proposed FIS architecture

The FIS system allows maintainers to evaluate a software
system. The FIS system provides specific membership degrees
for each maintenance actions (established as fuzzy sets). A
maintenance expert takes that information to modify the
software system to mitigate its erosion symptoms. The
proposed FIS system makes it possible the iterative and
incremental maintenance according to the following process.

Firstly, maintenance experts prioritize the set of
maintenance actions by arranging the membership degrees of
each action. Maintainers carry out the action with the highest
membership value, then the second one, and so on. However,
after the software system has been modified, some erosion
symptoms might be reduced, but other symptoms could be
worse. As a consequence, maintainers could carry out solely
the first action, and then reevaluate the software system
through the FIS system in order to know how the erosion
symptoms have changed.

Secondly, maintainers observe what symptoms were
eradicated after the first iteration. When the software system is
again evaluated, new membership degrees are obtained for
each action. Maintainers start here a new iteration following
the same steps. This incremental and iterative process finish

when the membership degrees of actions represent negligible
values.

Moreover, maintenance experts who know the budget of
the company and the available resources must establish a
threshold value to stop the iterative process. For instance, if a
company has a small budget for software maintenance, the
maintainers can establish a higher threshold value around 0.5.
This means that the maintenance actions with a lower
membership degree than 0.5 (the threshold) will be ignored. As
a consequence, the proposed FIS system aids the decision-
making process when companies want to maintain their
software systems.

The following subsections presents in detail the five
subsystems grouped into the symptom level and diagnosis level
(see Figure 1). Firstly, Subsection III.A provides the fuzzy set
inputs for the four first levels related to erosion symptoms.
Secondly, Subsection III.B presents the fuzzy set definition for
the maintenance actions, the output of the last subsystem.
Finally, Subsection 0 specifies all the rules concerning the five
subsystems.

A. Software Erosion Symptoms and Input Variables
The software erosion symptoms level (see Figure 1)

consists of four FIS subsystems. Each subsystem is in charge
of evaluation of a symptom. Our proposal is based in the
framework proposed by Vissagio [19], which characterizes the
erosion of software systems by four symptoms: pollution,
missing knowledge, coupling and anomalous data.

Each subsystem takes certain values since according to a
set of metrics, which are directly quantifiable by observing
software systems. Both specific metrics (as input) and erosion
symptoms (as outputs) are defined as a fuzzy set. TABLE II
shows the fuzzy set definition of all the metrics. Each fuzzy
sets defines its domain between 0 and 1, provides a set of
linguistic labels, and specifies the specific trapezoids in
numerical and graphical way for each label. TABLE III
specifies the fuzzy sets for the subsystem outputs related to
each software erosion symptom.

The identified fuzzy sets were defined in a heuristic manner
by taking into account the opinion of several maintenance
experts. After collect information from different experts, that
information was merged using the Delphi technique [15],
which allows achieving a workable consensus within time
limits. Despite this proposal, different fuzzy sets and linguistic
labels could be proposed for the FIS system. Indeed, the
mechanism employed in this paper to obtain the fuzzy sets is
not the most appropriate. For instance, a better definition could
imply a massive collection of information about real-life
maintenance and development projects. Thereby, the fuzzy set
could be obtained from this information through statistical
analyses, or by means of learning systems based on fuzzy logic
[1]. However, the definition of the optimal fuzzy sets is outside
of the scope of this paper.

Moreover, domains of all the fuzzy sets are defined
between 0 and 1 considering the density ratio of each metric,
since software systems can have different sizes. For instance,
the cloned program metric is defined as the number of
duplicate programs divided into the total number of programs

M

ai
nt

en
an

ce

Computational
Redundant Data

Semantic Redundant
Data

Obsolete Data

Useless Data

Control Data

Pathological Files

Poor Lexicon

Missing Functionalities

Missing Documentation

Dead Code

Dead Data

Sourceless Programs

Obsolete Programs

Clone Programs

Anomalous Data

Coupling

Missing
Knowledge

Pollution

Metrics Symptoms Diagnosis / Treatment

A1. Rewrite source
code through reverse
engineering

A2. Re-document
through reverse
engineering

A3. Remove dead
code and dead data

A4. Refactoring /
restructuring

A5. Remove
anomalous programs

A6. Remove
redundancies

51

of the software system (i.e., it represents the percentage of
cloned programs). The remaining of metric values are
accurately calculated in a similar way.

TABLE II. FUZZY SETS FOR THE INPUT METRICS

St Metric
Linguistic

Label
Trapezoids

P
ol

lu
ti

on

Clone Programs
{Low,

Medium,
High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

Obsolete
Programs

{Low,
Medium,

High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

Sourceless
Programs

{Low,
Medium,

High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

Dead Data

{Null, Low,
Medium,

High,
Maximum}

{[-0.25 0 0.25], [0
0.25 0.5], [0.25 0.5
0.75], [0.5 0.75 1],

[0.75 1 1.25]}

Dead Code

{Null, Low,
Medium,

High,
Maximum}

{[-0.25 0 0.25], [0
0.25 0.5], [0.25 0.5
0.75], [0.5 0.75 1],

[0.75 1 1.25]}

M
is

si
ng

 K
no

w
le

dg
e Missing

Documentation

{Low,
Medium,

High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

Missing
Functionalities

{Low,
Medium,

High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

Poor Lexicon
{Low,

Medium,
High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

C
ou

pl
in

g

Pathological
Files

{Null, Low,
Medium,

High,
Maximum}

{[-0.25 0 0.25], [0
0.25 0.5], [0.25 0.5
0.75], [0.5 0.75 1],

[0.75 1 1.25]}

Control Data

{Null, Low,
Medium,

High,
Maximum}

{[-0.25 0 0.25], [0
0.25 0.5], [0.25 0.5
0.75], [0.5 0.75 1],

[0.75 1 1.25]}

A
no

m
al

ou
s

D
at

a

Useless Data
{Low,

Medium,
High}

{[-0.5 0 0.5], [0 0.5 1],
[0.5 1 1.5]}

Obsolete Data
{Low,

Medium,
High}

{[-0.5 0 0.5], [0 0.5 1],
[0.5 1 1.5]}

Semantic
Redundant Data

{Low,
Medium,

High}

{[-0.5 0 0.5], [0 0.5 1],
[0.5 1 1.5]}

Computational
Redundant Data

{Low,
Medium,

High}

{[-0.5 0 0.5], [0 0.5 1],
[0.5 1 1.5]}

TABLE III. FUZZY SETS FOR THE EROSION SYMPTOMS

Erosion
Symptom

Linguistic
Label

Trapezoids

Pollution
{Null, Low,

Medium, High,
Maximum}

{[-0.25 0 0.25], [0 0.25 0.5],
[0.25 0.5 0.75], [0.5 0.75 1],

[0.75 1 1.25]}

Missing
Knowledge

{Low, Medium,
High}

{[-0.5 0 0.5], [0 0.5 1], [0.5 1
1.5]}

Coupling
{Null, Low,

Medium, High,
Maximum}

{[-0.25 0 0.25], [0 0.25 0.5],
[0.25 0.5 0.75], [0.5 0.75 1],

[0.75 1 1.25]}

Anomalous
Data

{Low, Medium,
High}

{[-0.5 0 0.5], [0 0.5 1], [0.5 1
1.5]}

B. Maintenance Actions and Output Variables
The diagnosis level depicted in Figure 1 contains a sole FIS

subsystem. This subsystem takes as input the fuzzy outputs of
symptoms subsystems of the previous level, and it generates as
final output the fuzzy values for each maintenance action. For
this purpose, six predefined actions (identified from A1 to A6)
have been selected according to the Vissagio framework (see
TABLE I).

• A1. Rewrite source code through reverse engineering.
Reverse engineering techniques are used to discover
embedded or missing knowledge. After that, new
executable source code is generated. This action
mainly addresses the pollution and missing knowledge
symptom.

• A2. Re-document through reverse engineering. This
action is very similar than previous one, however the
objective of reverse engineering is to extract
meaningful information about the software system
instead source code generation. This action deals with
the missing knowledge symptom.

• A3. Remove dead code and dead data. This action
analyses and removes lines of dead code as well as
data that are not reached. This action mainly deals with
the pollution symptom.

• A4. Refactoring / restructuring. This action reorganizes
and restructures the software system in order to deal
with any erosion symptom.

• A5. Remove anomalous programs. This action remove
programs in order to eradicate erroneous programs,
i.e., duplicated programs, obsolete programs, programs
that generate pathological files, and so on. It mainly
addresses the pollution and anomalous data symptom.

• A6. Remove redundancies. This action removes those
redundant data from the semantic and computational
viewpoint, thus it deals with the anomalous data
symptom.

TABLE IV. FUZZY SETS FOR THE MAINTENANCE ACTIONS

Maintenance Action Linguistic
Label

Trapezoids

A1. Rewrite source
code through reverse
engineering.

{Low, Medium,
High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

A2. Re-document
through reverse
engineering.

{Low, Medium,
High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

A3. Remove dead
code and dead data

{Low, Medium,
High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

A4. Refactoring /
restructuring

{Low, Medium,
High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

A5. Remove
anomalous programs

{Low, Medium,
High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

A6. Remove
redundancies

{Low, Medium,
High}

{[-0.5 0 0.5], [0 0.5
1], [0.5 1 1.5]}

52

These actions can fully or partially address one or more
erosion symptoms. The output of the last subsystem provides a
membership value for each action. In order to establish fuzzy
rules between symptoms and the set of actions, these actions
must be defined as fuzzy sets. TABLE IV shows the fuzzy sets
defined in the proposed FIS system. These fuzzy sets were also
established using the Delphi technique by involving
information provided by maintenance experts.

C. Fuzzy Rules
Finally, to complete the definition of the FIS system, a set

of fuzzy rules must be established to able the inference of an
entire diagnosis of a software system. Fuzzy rules are if-then
rules with a three-part process: Firstly, the precise metric
values are fuzzified with the metric fuzzy sets (see TABLE II).
Thus, all fuzzy inputs in the antecedent are resolved as a
membership degree between 0 and 1. If the antecedent involves
only one fuzzy set, then this is the degree of support for the
rule. Secondly, fuzzy logic operators (e.g. and, or) are applied
to multiple part antecedents. These operators resolve the
antecedent to a single number between 0 and 1, which is the
degree of support for the rule. Thirdly, the degree of support
for the entire rule is used to shape the output fuzzy set, i.e., the
consequent of the fuzzy rule. If the antecedent is partially true
(i.e., its membership value is lower than 1), then the output
fuzzy set is truncated according to the implication method.

On the one hand, a set of fuzzy rules are established to
define the outputs related to the four symptoms subsystems:
pollution, missing knowledge, Coupling and Anomalous Data.

Pollution fuzzy rules:
1. If (CloneProg is low) and (SourcelessProg is low) then (Pollution is null)
2. If (CloneProg is medium) and (SourcelessProg is low) then (Pollution is low)
3. If (CloneProg is high) and (SourcelessProg is low) then (Pollution is high)
4. If (CloneProg is medium) and (SourcelessProg is medium) then (Pollution is high)
5. If (CloneProg is medium) and (SourcelessProg is high) then (Pollution is maximum)
6. If (CloneProg is high) and (SourcelessProg is high) then (Pollution is maximum)
7. If (ObsoleteProg is low) and (DeadData is null) and (DeadCode is null) then (Pollution is

null)
8. If (ObsoleteProg is medium) and (DeadData is low) and (DeadCode is low) then (Pollution is

low)
9. If (ObsoleteProg is medium) and (DeadData is medium) and (DeadCode is medium) then

(Pollution is low)
10. If (ObsoleteProg is medium) and (DeadData is high) and (DeadCode is high) then (Pollution

is medium)
11. If (ObsoleteProg is medium) and (DeadData is maximum) and (DeadCode is maximum)

then (Pollution is high)
12. If (ObsoleteProg is high) and (DeadData is maximum) and (DeadCode is maximum) then

(Pollution is maximum)
13. If (ObsoleteProg is high) and (DeadData is high) and (DeadCode is high) then (Pollution is

high)
14. If (ObsoleteProg is high) and (DeadData is medium) and (DeadCode is medium) then

(Pollution is medium)
15. If (CloneProg is high) and (ObsoleteProg is high) and (SourcelessProg is high) then

(Pollution is maximum)
16. If (CloneProg is low) and (ObsoleteProg is low) and (SourcelessProg is low) and (DeadData

is null) and (DeadCode is null) then (Pollution is high)

Missing Knowledge fuzzy rules:
1. If (MissingDocument is low) and (MissingFunct is low) and (PoorLexicon is low) then

(MissingKnowledge is low)
2. If (MissingDocument is low) and (MissingFunct is low) and (PoorLexicon is medium) then

(MissingKnowledge is low)

3. If (MissingDocument is low) and (MissingFunct is medium) and (PoorLexicon is low) then
(MissingKnowledge is medium)

4. If (MissingDocument is medium) and (MissingFunct is medium) and (PoorLexicon is low)
then (MissingKnowledge is medium)

5. If (MissingDocument is medium) and (MissingFunct is medium) and (PoorLexicon is
medium) then (MissingKnowledge is medium)

6. If (MissingDocument is high) and (MissingFunct is medium) and (PoorLexicon is low) then
(MissingKnowledge is medium)

7. If (MissingDocument is not low) and (MissingFunct is high) and (PoorLexicon is not low)
then (MissingKnowledge is high)

8. If (MissingDocument is low) and (MissingFunct is high) and (PoorLexicon is low) then
(MissingKnowledge is medium)

Coupling fuzzy rules:
1. If (PathologicalFiles is not maximum) and (ControlData is maximum) then

(Coupling is maximum)
2. If (PathologicalFiles is high) and (ControlData is maximum) then (Coupling is

maximum)
3. If (PathologicalFiles is high) and (ControlData is high) then (Coupling is maximum)
4. If (PathologicalFiles is medium) and (ControlData is high) then (Coupling is high)
5. If (PathologicalFiles is medium) and (ControlData is medium) then (Coupling is

medium)
6. If (PathologicalFiles is low) and (ControlData is medium) then (Coupling is

medium)
7. If (PathologicalFiles is low) and (ControlData is low) then (Coupling is low)
8. If (PathologicalFiles is null) and (ControlData is low) then (Coupling is low)
9. If (PathologicalFiles is null) and (ControlData is null) then (Coupling is null)

Anomalous Data fuzzy rules:
1. If (SemRedundant is not high) and (CompRedundant is not high) then

(AnomalousData is not high)
2. If (SemRedundant is medium) and (CompRedundant is not low) then

(AnomalousData is medium)
3. If (SemRedundant is medium) and (CompRedundant is not medium) then

(AnomalousData is medium)
4. If (SemRedundant is high) and (CompRedundant is not high) then (AnomalousData is

high)
5. If (UselessData is not low) and (ObsoleteData is not low) and (SemRedundant is not

low) and (CompRedundant is not low) then (AnomalousData is not low)
6. If (UselessData is high) and (ObsoleteData is high) and (SemRedundant is not low)

and (CompRedundant is not low) then (AnomalousData is high)
7. If (UselessData is medium) and (SemRedundant is high) then (AnomalousData is

high)
8. If (ObsoleteData is medium) and (SemRedundant is high) then (AnomalousData is

high)
9. If (ObsoleteData is medium) and (CompRedundant is high) then (AnomalousData is

high)

On the other hand, after establishing fuzzy rules concerning
the FIS subsystems of symptom level, the set of rules of the
action subsystem must be also defined. These rules were
established in the similar way than the previous sets.

Maintenance Actions fuzzy rules:
1. If (Pollution is not low) then (A1 is high)(A3 is medium)(A5 is medium)
2. If (MissingKnowledge is high) then (A1 is medium)(A2 is medium)(A4 is low)
3. If (MissingKnowledge is not low) and (AnomalousData is not low) then (A4 is

medium)
4. If (AnomalousData is high) then (A5 is medium)(A6 is high)
5. If (AnomalousData is not high) then (A5 is low)(A6 is medium)
6. If (Pollution is medium) and (AnomalousData is not low) then (A4 is low)(A6 is

medium)
7. If (Coupling is not low) then (A4 is alto)(A5 is medium)
8. If (Coupling is high) then (A4 is alto)(A5 is low)
9. If (Pollution is low) and (MissingKnowledge is low) then (A1 is low)(A2 is low)
10. If (Pollution is low) then (A3 is low)

IV. IMPLEMENTATION
This paper also provides an implementation of the proposed

FIS system in order to demonstrate its feasibility and facilitate
its adoption. The FIS system has been implemented using the

53

Fuzzy Logic Toolbox of Matlab [17]. In addition, the FIS’s real
performance has been also simulated by means of Simulink
[18], another Matlab module.

The implementation of the FIS system using the Fuzzy
Logic Toolbox was carried out following a set of steps for each
aforementioned FIS subsystem. Due to space limitations, it
focuses in the Coupling subsystem to illustrate the entire
implementation process.

1. The inputs and output of the FIS system are firstly
selected. Relationships between the input fuzzy
variables and output fuzzy variables are established.
This task can be easily carried out by means of the FIS
Editor of Matlab (see Figure 2). The type of the FIS
subsystem can be also selected by means of that editor.
All subsystem are based in the Mandami controller
configuration [9, 10].

2. In the second step, input and output fuzzy variables are
defined by means of fuzzy sets. Each fuzzy variable
has several linguistic labels and each label is defined as
a fuzzy set. This task is also performed through the
Matlab FIS editor according to the fuzzy variables
presented in Section III. For instance, Figure 3 shows
the definition of the fuzzy set for the ‘null’ linguistic
label within ‘PathologicalFiles’ input variable in the
Coupling subsystem.

3. The third step involves the fuzzy rules definition. This
task establishes specific relationship through the
linguistic labels of both input and output fuzzy
variables. Matlab also provides a graphical editor to
easily generate fuzzy rules.

4. Finally, the logic operators as well as the implication
and defuzzification operations must be established
through the Matlab FIS editor (see Figure 2). The ‘and’
and ‘or’ logic operators are used in antecedents of
fuzzy rules to combine several fuzzy sets. In this case
we respectively select the minimum and maximum
operators to combine several fuzzy sets. These
operators are well-known and commonly used to
represent the intersection (and) and union (or) of fuzzy
sets. Moreover the implication function is selected in
this step. The implication function is used to obtain a
membership value in the consequent fuzzy set from the
membership value of the antecedent. This FIS system
uses the minimum operation. Another operation that
must be established is the aggregation function. This
function merges all membership values obtained in a
particular fuzzy set that appears in consequents of
several rules. The FIS system uses the maximum
operation since it guarantees to obtain the higher value
obtained for a particular fuzzy set. Finally, a
deffuzzification function must be selected to obtain a
real value between 0 and 1from the aggregated area
obtained in a particular consequent fuzzy set. The
proposed FIS system uses the centroid function, which
use the weighted average of a few data points in the
aggregated area.

Figure 2. The FIS subsystem configuration for the coupling symptom

Figure 3. Fuzzy set definition for the coupling subsystem

V. SIMULATION
To simulate the FIS system implemented though the

Matlab Fuzzy Logic Toolbox, we use Simulink [18]. Simulink is
an environment for multi-domain simulation and model-based
design for dynamic and embedded systems. It makes it possible
to simulate, implement, and test a variety of time-varying
systems.

Figure 4 shows the simulation model of the proposed FIS
system, which is built in Simulink as a fuzzy logic controller
following the architecture presented in Figure 1. Firstly, the
fuzzy logic controller will receive the precise values of the all
maintenance metrics, and it then will trigger the respective
fuzzy rules of the four subsystems in the symptom level.
Outputs of the symptom subsystems are used as the input for
the maintenance subsystem, which generates the membership
degree (as a value between 0 and 1) to each of the six possible
maintenance actions. In addition, the controller filters out

54

actions under the aforementioned maintenance threshold,
which can be established by maintenance experts in each
company. As a consequence, the controller indicates by means
a light what actions should be carried out.

In order to simulate the performance of the FIS system, a
real-life software system was evaluated. The software system
named VillasanteLab manages the operation of a Spanish
company in the water and waste industry. VillasanteLab
system manages information related to chemical laboratories,
customers and products such as chemical analysis, dilutions,
and chemical calibrations. The analyses supported by the
application examined different parameters, including a large
number of physical, chemical and microbiological parameters
according to current regulations and laws for controlling water
quality. From a technological point of view, VillasanteLab
system is a traditional web application developed using Java
platform and consists of 28.800 lines of source code. This
software system was released for four years ago, and it has had
three major modifications with seven medium modifications in
total. Therefore, the VillasanteLab system probably has been
eroded over time.

Firstly, all the maintenance metrics used in our FIS system
were accurately evaluated. TABLE V shows the fourteen
metric values obtained after evaluating the VillasanteLab
system. These values were introduced in the simulation model
and the model was then executed in Simulink (see Figure 4).
The obtained results for the erosion symptoms were
respectively 0.2, 0.5, 0.5 and 0.4; and the final results
concerning maintenance actions were 0.80, 0.50, 0.43, 0.55,
0.41 and 0.5 (see TABLE V). In addition, the fuzzy rules
executed as well as the fuzzy sets values were obtained during
simulation (see Figure 5).

The configuration of simulation considers a maintenance
threshold of 0.5. Therefore, the recommended maintenance
actions for the VillasanteLab system were A1. Rewrite source
code through reverse engineering as well as A4. Refactoring /
restructuring.

VI. CONCLUSIONS
This paper presented a fuzzy rule-based system (also

known as Fuzzy Inference System) to find out the software
erosion symptoms of a concrete software system. The proposed
FIS system does not only diagnose the kind of software
erosion, but also recommend the best treatment for the eroded
system. We refer to “the best treatment” as a set of
maintenance actions that must be carried out to reduce or
mitigate the software those erosion symptoms without
incurring in more erosion itself.

The design of the FIS system was mainly divided into two
levels. The first level evaluates the erosion symptoms, which
consists of four subsystems (one for each symptom). Each
subsystem accepts as input metrics accurately measured from
the software system. These precise values are then fuzzified
and a set of fuzzy rules establish as output the membership
degrees for each symptom subsystem. The second level has
only one subsystem, which takes the fuzzy values of each
symptom subsystem and it obtains the membership degrees for
each candidate maintenance action.

Figure 4. Simulation model for the proposed FIS system

TABLE V. SIMULATION DATA FOR AN EXISTING SOFTWARE SYSTEM

Metric Precise
Value Symptom Value Action Value

Clone Programs 0.30

Pollution 0.229

A1 0.804
Obsolete Programs 0.20
Sourceless Programs 0

A2 0.500
Dead Data 0.10
Dead Code 0.15

A3 0.427
Missing Documentation 0.80

Missing
Knowledge 0.500 Missing Functionalities 0

A4 0.546
Poor Lexicon 0.20
Pathological Files 0

Coupling 0.500 A5 0.413
Control Data 0.50
Useless Data 0.40

Anomalous
Data 0.386

A6 0.500
Obsolete Data 0
Semantic Redundant Data 0.20

Computational Redundant Data 0

Figure 5. Obtained results during simulation

55

In order to validate the feasibility of our proposal and its
adoption, the proposed FIS system was also implemented in
Matlab using the fuzzy logic toolbox. Furthermore, the
implemented system was also simulated through Simulink. The
advantage of the implemented simulation system is that
maintainers can know the best set of maintenance actions to be
carried out. The set of actions is prioritized, which helps
maintainers to distribute maintenance resources and efforts. In
addition, maintainers can estimate the reduction of erosion
metrics in the hypothetical case to carry out the recommended
actions. As a consequence, they might simulate a set of
iterations of incremental maintenance and predict by means of
our system the expected reduction of erosion symptoms. If a
simulation shows that the software system is much eroded and
a lot of maintenance effort will be necessary, the system could
be discarder without starting the maintenance process. In
conclusion, the proposed FIS system supports the decision-
making process in the maintenance stage, and it can save
maintenance cost by means of the proposed simulation model.

Moreover, the simulation of our system allowed us to detect
potential improvements for the FIS system. Those
improvements were progressively applied to adjust the
definition of fuzzy sets. In addition, the rules were established
by experts according to the Delphi technique and they were
progressively improved through the simulation. However, the
Delphi technique adopted to establish the rules is not the best
approach, since it has a heuristic nature. As a consequence, we
propose as future work the improvement of the fuzzy rules by
using statistical techniques from real-life maintenance data or
learning systems to find out the optimum fuzzy rules.

ACKNOWLEDGMENT
This work was supported by the FPU Spanish Program; by

the R+D projects funded by JCCM: ALTAMIRA (PII2I09-
0106-2463) and PRALIN (PAC08-0121-1374); and the
PEGASO/MAGO project (TIN2009-13718-C02-01) funded by
MICINN and FEDER.

REFERENCES

[1] Albusac, J., J.J. Castro-Schez, and D. Vallejo-Fernandez. "Learning

Maximal Structure Rules with pruning based on distances between fuzzy
sets". in 12th International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU'08).
2008. Malaga, Spain p. 441-447.

[2] Basili, V., L. Briand, S. Condon, Y.-M. Kim, Walc\, \#233, l.L. Melo,
and J.D. Valett. "Understanding and predicting the process of software
maintenance release". in Proceedings of the 18th international

conference on Software engineering. 1996. Berlin, Germany: IEEE
Computer Society p. 464-474.

[3] Ghazarian, A. "A Case Study of Source Code Evolution". in 13th
European Conference on Software Maintenance and Reengineering
(CSMR'09). 2009. Fraunhofer IESE, Kaiserslautern, Germany: IEEE
Computer Society p. 159-168.

[4] Hall, R. and S. Lineham, "Using metrics to improve software
maintenance". BT Technology Journal, 1997. 15(3): p. 123-129.

[5] Hayes, J.H., S.C. Patel, and L. Zhao. "A Metrics-Based Software
Maintenance Effort Model". in Proceedings of the Eighth Euromicro
Working Conference on Software Maintenance and Reengineering
(CSMR'04). 2004: IEEE Computer Society p. 254.

[6] ISO/IEC, ISO/IEC 14764:2006. Software Engineering -- Software Life
Cycle Processes -- Maintenance. http://www.iso.org/iso/catalogue
detail.htm?csnumber=39064. 2006, ISO/IEC.

[7] Koskinen, J., J. Ahonen, H. Lintinen, H. Sivula, and T. Tilus, Estimation
of the Business Value of Software Modernizations. 2004, Information
Technology Research Institute. University of Jyväskylä.

[8] Lehman, M.M., D.E. Perry, and J.F. Ramil. "Implications of Evolution
Metrics on Software Maintenance". in Proceedings of the International
Conference on Software Maintenance. 1998: IEEE Computer Society p.
208-217.

[9] Mamdani, E.H., "Application of fuzzy algorithms for control of simple
dynamic plant". Proceeding of IEEE, 1974. 121(12).

[10] Mamdani, E.H. and S. Assilian, "An Experiment in Linguistic Synthesis
with a Fuzzy Logic Controller". International journal of human-
computer studies, 1999. 51(2): p. 135-147.

[11] Mittal, H. and P. Bhatia, "Software maintainability assessment based on
fuzzy logic technique". SIGSOFT Softw. Eng. Notes, 2009. 34(3): p. 1-
5.

[12] Mittal, J.P., P. Bhatia, and H. Mittal, "Software maintenance
productivity assessment using fuzzy logic". SIGSOFT Softw. Eng.
Notes, 2009. 34(5): p. 1-4.

[13] Ning, M.H., Q. Yong, H. Di, C. Ying, and Z.J. Zhong. "Software Aging
Prediction Model Based on Fuzzy Wavelet Network with Adaptive
Genetic Algorithm". in Proceedings of the 18th IEEE International
Conference on Tools with Artificial Intelligence. 2006: IEEE Computer
Society p. 659-666.

[14] Polo, M., M. Piattini, and F. Ruiz, Advances in software maintenance
management: technologies and solutions. 2003: Idea Group Publishing.

[15] Rowe, G. and G. Wright, "The Delphi technique as a forecasting tool:
issues and analysis". International journal of forecasting, 1999. 15(4): p.
353-375.

[16] Sneed, H.M., Estimating the Costs of a Reengineering Project.
Proceedings of the 12th Working Conference on Reverse Engineering.
2005: IEEE Computer Society.

[17] The Mathworks, I., Fuzzy Logic Toolbox of Matlab
http://www.mathworks.com/products/fuzzylogic/. 2009.

[18] The Mathworks, I., Simulink. Simulation and Model-Based Design.
http://www.mathworks.com/products/simulink/. 2009.

[19] Visaggio, G., "Ageing of a data-intensive legacy system: symptoms and
remedies". Journal of Software Maintenance, 2001. 13(5): p. 281-308.

[20] Zadeh, L.A., "Fuzzy Sets*". Information and Control, 1965. 8: p. 338-
353.

56

